Totally Optimal Decision Trees for Monotone Boolean Functions with at Most Five Variables
نویسندگان
چکیده
منابع مشابه
Totally Optimal Decision Trees for Monotone Boolean Functions with at Most Five Variables
In this paper, we present the empirical results for relationships between time (depth) and space (number of nodes) complexity of decision trees computing monotone Boolean functions, with at most five variables. We use Dagger (a tool for optimization of decision trees and decision rules) to conduct experiments. We show that, for each monotone Boolean function with at most five variables, there e...
متن کاملLocally monotone Boolean and pseudo-Boolean functions
We propose local versions of monotonicity for Boolean and pseudoBoolean functions: say that a pseudo-Boolean (Boolean) function is p-locally monotone if none of its partial derivatives changes in sign on tuples which differ in less than p positions. As it turns out, this parameterized notion provides a hierarchy of monotonicities for pseudo-Boolean (Boolean) functions. Local monotonicities are ...
متن کاملMost Complex Boolean Functions
It is well known that Exclusive Sum-Of-Products (ESOP) expressions for Boolean functions require on average the smallest number of cubes. Thus, a simple complexity measure for a Boolean function is the number of cubes in its simplest ESOP. It will be shown that this structure-oriented measure of the complexity can be improved by a unique complexity measure which is based on the function. Thus, ...
متن کاملInfluences of monotone Boolean functions
Recently, Keller and Pilpel conjectured that the influence of a monotone Boolean function does not decrease if we apply to it an invertible linear transformation. Our aim in this short note is to prove this conjecture.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Procedia Computer Science
سال: 2013
ISSN: 1877-0509
DOI: 10.1016/j.procs.2013.09.113